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Abstract: In this paper, optimal placement of Phasor Measurement Unit (PMU) using 
Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated 
Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used 
for this problem. Pheromone evaporation coefficient and the probability of moving from 
state x to state y by ants are introduced into the ACO. The modified algorithm overcomes 
the ACO in obtaining global optimal solution and convergence speed, when applied to 
optimize the PMU placement problem. We also compare this simulation with SA, PSO and 
GA to examine the capability of ACO in the search of optimal solution. The fitness 
function includes observability, redundancy and the number of PMU. Logarithmic Least 
Square Method (LLSM) is used to calculate the weights of fitness function. The suggested 
optimization method is applied in 30-bus IEEE system and the simulation results show that 
modified ACO results are better than PSO and SA, but it has nearly the same results as GA. 
 
Keywords: Evolutionary Algorithms, Global Positioning System, Optimal Placement, 
Phasor Measurement Unit. 

 
 
 
1 Introduction1 
The Global Positioning System (GPS), which is a 
satellite based system, is the main synchronizing source 
which is used to provide an accurate time reference on 
the communication networks, and its broad availability 
makes it possible to obtain, at each point of the tested 
system, a clock signal that is synchronized with the one 
generated in other remote places. Currently, GPS is the 
only satellite system with sufficient availability and 
accuracy for the most scattered monitoring and control 
applications in distribution systems. Synchronizing 
signals could also be broadcast from a terrestrial 
location, and with respect to this, radio broadcasts are 
probably the least expensive [1, 2]. 

The accurate time reference signal, which the 
standard refers to for the evaluation of the synchronized 
phasors, is the Universal Time Coordinated (UTC). For 
this purpose, GPS receivers specify that the 
synchronization signal must have a basic repetition rate 
of one Pulse Per Second (1 PPS). The synchronizing 
source shall have sufficient availability, reliability, and 
accuracy to meet power system requirements [3]. 

Monitoring the operating state of the system and 
assessing its stability in real time has been recognized as 
                                                 
Iranian Journal of Electrical & Electronic Engineering, 2013. 
Paper first received 27 Sep. 2012 and in revised form 15 Apr. 2013. 
* The authors are with the Department of Electrical Engineering, Iran 
University of Science and Technology, Tehran, Iran. 
E-mails: M_Mosavi@iust.ac.ir and Amir_Akhiani@yahoo.com. 

a task of paramount importance and a tool to prevent 
blackouts. Phasor Measurement Units (PMUs) is used to 
estimate system stability [4]. 

Recently, PMUs equipped with GPS is applied in 
power systems monitoring and state estimation. PMUs 
can directly measure the voltage amplitudes and phase 
angles of key buses in power systems with high 
accuracy. Since GPS provides tiny synchronization 
errors, the interests are concentrated on where and how 
many PMUs should be implemented in a power system 
with the least cost and with the largest degree of 
observability [5]. 

Because of the strong correlation between PMUs 
and the GPS, PMUs began to spread greatly after the 
great improvement in the satellite techniques and 
communications [6]. 

The PMU Placement Optimization (PPO) is to 
minimize the number of PMUs and maximize the 
redundancy by optimizing the PMU’s locations, while 
keeping all the nodes voltage phasors observable. A 
specially tailored non-dominated sorting Genetic 
Algorithm (GA) for a PMU placement problem is 
proposed in [7] as a methodology to find these Pareto-
optimal solutions. 

Taking the full network observability of power 
system operation states and the least number of PMUs 
as an objective function, an improved optimal PMU 
placement algorithm is proposed in [8]. In this 
algorithm, GA is effectively combined with the Particle 
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Swarm Optimization (PSO) algorithm to ensure that the 
optimal solution can be obtained [8]. 

In this paper, we want to perform PPO with 
modified Ant Colony Optimization (ACO), GA, PSO 
and Simulated Annealing (SA) and these results 
compared with each other. At first, we introduce 
observability in power systems. Then we talk about 
fitness function and evolutionary algorithms and finally 
simulation results and compression with each other. 
 
2 Power System Observability with PMUs 

Power system observability might be described by 
graph theory [9]. An N-bus power system is represented 
as a no oriented graph GሺN, Bሻ, where ܰ is a set of 
graph vertices containing all system nodes, and B  is a 
set of graph edges containing all system branches. 
PMUs could measure the voltages and all the branch 
current phasors at the nodes where they are placed. The 
phasors of the nodes without PMUs, may be prepared 
via pseudo-measurement. The pseudo-measurement 
includes three parameters: 

1. If the voltages at the both ends of a branch 
have been known, the current of that branch 
can be calculated using Ohm’s laws, 

2. If a node voltage and one branch current have 
been known, the voltage of another end of the 
branch can be calculated using Ohm’s laws, 
and 

3. If a node where all but one branch current are 
known, the last unknown current can be 
calculated using Kirchhoff’s law [10]. 

Totally observability is devided to numerical and 
topological strategies. In this paper, observability is 
calculated by topological strategy. In topological 
strategy observability function ( fi ) is calculated for 
every node of the network using incidence matrix [11]. 
For example for the network that is shown in Fig. 1 the 
incidence matrix is: 
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and the observability function is: 
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Fig. 1 Example for 6-bus system 
 
 
where ‘+’ is OR (logical operator) and xi  is defined: 
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3 Problem Formulation 

In this section, at the beginning, we determine 
fitness function. Then, we talk about ACO, GA, PSO 
and SA algorithm and values of its parameter in these 
problems. 
 

3.1   Fitness Function 
Fitness function for placement in this paper is 

defined: 
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 shows the observability value of the power 

system, NMU is the number of PMUs in the power 
system network. If we assume that the favorite level of 
redundancy is 2, Jଵ is the difference between the favorite 
and the real values. To calculate the weights of fitness 
function, we consider the importance of each factor in 
comparison to the other factors. Table 1 is used to 
calculate the scales of pair-wise comparisons. 

Once a hierarchy framework is constructed, users 
are requested to make a pair-wise comparison matrix at 
each hierarchy and compare each other by using a scale 
pair-wise comparison [12]. The below 3*3 matrix is 
calculated according to Table 1: 
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Table 1 Scale for pair-wise comparisons [12]. 

Relative 
intensity Definition 

1 Equal value 

3 Slightly more value 

5 Essential or strong value 

7 Very strong value 

9 Extreme value 

2,4,6,8 Intermediate values 
between two adjacent judgments 

 
W୧ can be calculated as follows: 
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where ija  is an item of this matrix ݊ is the number of 

fitness function factors. This function is called 
Logarithmic Least Square Method (LLSM), which is a 
part of the Analytical Hierarchy Process (AHP) 
algorithm [12]. 
 

3.2   ACO Algorithm 
To solve several discrete optimization problems, 

ACO metaheuristic, a new population-based approach 
was proposed in [13]. An ant is a simple computational 
agent in the ACO algorithm. It iteratively constructs 
solutions for the problem. The intermediate solutions 
are a kind of solution states. At each repetition of the 
algorithm, each ant goes from a state x to state y, to 
make a more complete intermediate solution. Therefore, 
each ant k create a set AKሺxሻ of feasible expansions to 
its current state at each repetition, and moves to one of 
these in probability. For ant k, the probability p୶୷

୩  of 
moving from state ݔ toward state ݕ depends on the 
combination of two values. The attractiveness ߟ௫௬ of the 
move shows how expert it has been in the past to make 
that particular move. ߟ௫௬ has been calculated by some 
heuristic method indicating a priori desirability of that 
move and the trail level τ୶୷ of the move. The trail level 
indicates a posteriori indication of the desirability of 
that move. Trails are updated often when all ants have 
completed their solutions, decreasing or increasing the 
level of trails corresponding to moves that were a part of 
"unsuitable" or "suitable" solutions, respectively. In 
general, the k୲୦ ant moves from state x to state y with 
this probability: 
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where τ୶୷ is the amount of pheromone which is 
deposited for change from state x to y. α  0 controls 
the effect of τ୶୷, η୶୷ is the desirability of the state 

transition xy (previous knowledge,  ଵ
ୢ౮౯

 generally, where 

d is the distance) and β  0 controls the influence of 
η୶୷. When all the ants have completed a solution, the 
trails are updated as follows: 
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where τ୶୷
୩  is the amount of pheromone that is deposited 

for a state transition xy, ρ is the pheromone evaporation 
coefficient and ∆τ୶୷

୩  is the amount of pheromone which 
is deposited, generally given by: 
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in which LK is the cost of the k୲୦ ant's tour (generally 
length) and Q is constant [14]. The ant system simply 
repeats a main loop where ݉ ants construct in parallel 
their solutions, thus updating the trail levels. The 
function of the algorithm depends on the correct tuning 
of several parameters. α  and  β are relative importance 
of trail and attractiveness, τijሺ0ሻ is initial trail level, ρ is 
trail persistence, ݉ is the number of ants, and Q is used 
for explaining to be of high quality solutions with low 
cost. The algorithm is as follow: 
 
Step1: Initialization 
Initialize τij and ηij, (ij). 
 
Step2: Construction 
For each ant k (currently in state i) do 
   repeat 
        choose in probability the state to move into. 
        append the chosen move to the k-th ant's set tabuk. 
   until ant k has completed its solution. 
end for 
 
Step3: Trail update 
For each ant move (ij) do 
   compute ∆τij. 
   update the trail matrix. 
end for 
 
Step4: Terminating condition 
If not (end test) go to step 2 [15]. 

In this problem, we assume ߚ ൌ ߙ ,0 ൌ 1 in Eq. (8) 
and Q ൌ 1 in Eq. (9). 
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3.3   Genetic Algorithm 
In GA, a population of strings (chromosomes), 

which encode candidate solutions (individuals) to 
optimize the result, evolves toward better solutions. 
Classically, solutions are represented in binary as strings 
of zeros and ones, but other encodings could also be 
considered. The evolution often begins from a 
population of randomly generated individuals and 
occurs in generations. In each repetition, every 
individual fitness in the population is estimated, 
multiple individuals are stochastically chosen from the 
current population (according to their fitness), and 
modified (recombined and maybe mutated randomly) 
thus forming a new population. The new population is 
then handled in the next repetition of the algorithm. 
Generally, the algorithm is finished whenever a 
satisfactory fitness level has been reached for the 
population or a maximum number of generations has 
been made. If the algorithm has been finished because 
of a maximum number of generations, an accepted 
solution may or may not have been reached [16]. 

GAs find application in different fields of 
engineering, artificial intelligence, economics, 
manufacturing, physics, mathematics, etc. GAs require: 
1) a genetic representing of the solution zone, and 2) a 
fitness function to estimate the solution zone. A 
standard representing of the solution is an array of bits. 
Arrays of other kinds and constructions could be used in 
the same manner. The most important characteristic that 
makes these genetic representations suitable is that their 
sections are easily aligned because of their fixed size, 
which reaches simple crossover operations. Variable 
length representations could also be considered, but 
crossover implementation is more complex in this 
situation. In genetic programming tree-like 
representations are used and in programming graph-
form representations are considered. The fitness 
function has to be defined in the genetic representation. 
The fitness function measures the quality of the 
represented solution. The fitness function always 
depends on the problem. Sometimes it is hard or even 
infeasible to define the fitness expression; in such cases, 
interactive GA should be used. When the genetic 
representation and the fitness function has been defined, 
a GA begins to initialize a new population of solutions. 
GA then tries to improve the population using repetitive 
application of the mutation, crossover, inversion and 
selection operators [17]. 
 

3.3.1   Initialization 
Initially a lot of individual solutions are 

stochastically generated to form an initial population. 
The population size depends on the problem 
characteristic, but may contain several thousands of 
possible answers. Classically, the population is 
stochastically generated, allowing the entire range of 
feasible answers. Sometimes the solutions might be 

"seeded" in zones where optimal solutions are possible 
to be found [17]. 
 

3.3.2   Selection 
In each generation, a proportion of the population is 

selected to bring about a new generation. Individual 
solutions are chosen through a fitness-based process, 
where generally more suitable solutions are more 
fortunate to be selected. Definite selection methods 
assess the fitness of each solution and preferentially 
choose the best answers. Other methods assess only a 
random sample of the population, as the latter process is 
probably very time-consuming [17]. 
 

3.3.3   Reproduction 
Now is the time to generate a second generation 

population of answers from those chosen through 
crossover and mutation. For each new answer to be 
produced, a pair of "parent" answers should be selected 
for breeding from the pool chosen in the past. By 
producing a "child" answer using the previous methods 
of crossover and mutation, a new answer is made which 
generally shares many of the features of its "parents". 
New parents are chosen for each new child, and the 
process keeps doing until a new population of answers 
of appropriate size is generated. Despite the fact that 
reproduction methods which are based on the use of two 
parents are more "biology inspired", several researches 

suggest that more than two "parents" generate better 
quality chromosomes. Ultimately these processes bring 
about the next generation population of chromosomes 
which is totally different from the initial one. Usually 
the average fitness will have been increased by this 
procedure for the population, since only the best 
organisms from the first generation are chosen for 
breeding, along with a small proportion of less fit 
answers, because of the reasons already said above. 
Although crossover and mutation are considered as the 
principal genetic operators, it is feasible to use other 
operators like regrouping, colonization-extinction, or 
migration in our GAs [17]. 
 

3.3.4   Termination 
This generational process should be repeated until a 

termination condition is reached. Common terminating 
conditions are: 1) an answer is found that meets the 
minimum criteria, 2) fixed number of generations are 
reached, 3) assigned budget reached, 4) the best ranking 
answer's fitness is meeting or has met a plateau so 
successive repetitions no longer produce any better 
results, 5) manual verifying, and 6) combinations of the 
above. Typical generational GA procedure [17]: 
 
Step1: Select the initial population of individuals. 
 
Step2: Estimate the fitness of each individual in that 
population. 
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Step3: Repeat on this generation until termination 
(sufficient fitness achieved, time limit, and etc.): 

1. Select the best-fit individuals for reproduction. 
2. Breed new individuals through crossover and 

mutation operations to give birth to offspring. 
3. Evaluate the individual fitness of new 

individuals. 
4. Replace least-fit population with new 

individuals. 
 

3.4   Particle Swarm Optimization 
PSO is a computational method in artificial 

intelligence that optimizes a problem by iteratively 
keeping improving a candidate solution regarding a 
given measure of quality. Our problem is optimized by 
PSO. In PSO there is a population of candidate 
solutions, here named particles, which move around in 
the search-space based on simple mathematical 
formulae over the particle's velocity and position. The 
movement of each particle is influenced by its local best 
position and is also directed towards the best positions 
in the search-space, which are updated when better 
positions are found by other particles. This method is 
expected to move the swarm towards the best answers. 
PSO is originally introduced by Eberhart, Kennedy and 
Shi and was first planned to simulate social behavior, as 
a representation of the movement of mechanism in a 
fish school or bird flock. The algorithm became 
simplified and it was considered to perform 
optimization. The book by Kennedy and Eberhart 
explains many philosophical points of view of PSO and 
swarm intelligence. A great survey of PSO uses is made 
by Poli [18]. 

PSO is a metaheuristic because it makes almost no 
assumptions about the problem being optimized and can 
search large spaces of candidate solutions. However, 
metaheuristics like PSO do not guarantee that an 
optimal solution is found. PSO does not use the gradient 
of our problem, which means it is not necessary for our 
optimization problem to be differentiable, although it 
was required for classical optimization methods like 
gradient descent and quasi-newton. Therefore PSO can 
be used in optimization problems that are noisy, 
partially irregular, change over time, and etc. 

Formally, let f: Rn → R be the objective function 
that must be minimized. The function takes a candidate 
answer as argument which is in the form of a vector of 
real numbers and produces a real number as output 
which shows the fitness of the given candidate answer. 
The gradient of f is not determined. The aim is to find 
an answer: a for which f(a) ≤ f(b) for all b in our search-
space, which mean a is the global minimum. 
Maximization can be done by considering h ൌ െf  
instead. Presume that ܵ is the number of particles in the 
swarm, each of them have a position xi אRn in our 
search-space and a velocity vi א  R୬. Presume that p୧ is 
the best known position of particle i and presume that g 

is the best known position of the entire swarm. A basic 
PSO algorithm would be [19]: 
 
Step1: For each particle i = 1, ..., S perform: 

1. Initialize the position of the particle with a 
uniformly distributed random vector: 
xi~U(blow, bup), where blow and bup are the lower 
and upper boundaries of the search-space. 

2. Initialize the best known position of the 
particle to its initial position: pi ← xi. 

3. If (f(pi) < f(g)) update the best known position 
of the swarm: g ← pi. 

4. Initialize the velocity of the particle: 
vi~U(-|bup-blow| , |bup-blow|). 

 
Step2: Until a termination criterion is reached (e.g. the 
number of iterations performed), repeat: 

5. For each particle i = 1, ..., S perform: 
 For each dimension d = 1, ..., n perform: 

 Pick random numbers: 
 rp, rg~U(0,1). 

 Update the velocity of the 
particle: vi,d ← ωvi,d +φprp(pi,d-xi,d) 
+ φgrg(gd-xi,d). 

 Update the position of the particle: 
 xi ← xi + vi. 

 If (f(xi)< f(pi)) perform: 
 Update the best known position 

of the particle: pi ← xi. 
 If (f(pi)< f(g)) update the best 

known position of the swarm: 
 g ← pi. 

 
Step3: Now g holds the best found answer. 
 

The parameters ω, φp, and φg are chosen by the 
practitioner and control the behavior and efficacy of 
PSO [19]. 

Kennedy and Eberhart [17] have adapted the PSO to 
search in binary spaces. For binary discrete search 
space, by applying a sigmoid transformation to the 
velocity component Eq. (10) to press the velocities into 
a range [0,1], and force the component values of the 
position of particles to be zeros or ones. The equation 
for updating positions is then replaced by Eq. (11) [20]. 

sigmod൫V୧,ୢ
୩ାଵ൯ ൌ ଵ

ଵାୣషV,ౚ
ౡ                                           (10) 

x୧ୢ
୩ ൌ ൜1   ;    if   rand ൏ sigmod൫V୧,ୢ

୩ାଵ൯
0   ;                   otherwise              

                    (11) 

That Vi,d is the velocity of the particles. 
 

3.5   Simulated Annealing 
Here SA is a generic probabilistic metaheuristic for 

the global optimization problem of finding a good 
estimation to the global optimum of a given function in 
a really large search space. It is often applied when the 
search space is discrete. For specific problems, SA 
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might be more efficient than exhaustive enumeration 
providing the goal is merely to find a good answer in a 
fixed amount of time, rather than the best possible 
answer. SA comes from annealing in metallurgy, a 
technique which has heating and controlled cooling of a 
material to increase the size of its crystals and decrease 
their defects. The heat forces the atoms to be unstuck 
from their initial positions, that is a local minimum of 
the internal energy, and go randomly through states of 
higher energy, the slow cooling gives them more chance 
to find configurations with lower internal energy than 
the initial one. Comparing with this physical process, 
each step of SA tries to replace the current answer by a 
random answer (selected according to a candidate 
distribution, usually constructed to sample from answers 
near the current answer). The new answer might be 
accepted with a probability which depends both on the 
difference between the corresponding function values 
and on a global parameter T (temperature). T is 
gradually decreased during the algorithm. The 
dependency is such that the selection between the 
previous and the current answer is almost random when 
T is large, but increasingly chooses the better or 
"downhill" answer (in a minimization problem) as T 
goes to zero. The allowance for "uphill" moves saves 
the procedure from becoming stuck at local optima. In 
SA, each point s of the search-space is similar to a state 
of some physical system, and also the function Eሺsሻ to 
be minimized is similar to the internal energy of the 
system in that state. The aim is to bring the system, 
from a random initial state, to a state with the minimum 
possible energy [21]. A basic SA algorithm is as 
follows. Presume that sଵ is an initial solution and ܶ is an 
initial temperature. 
 
 

Repeat 
           Sଶ ൌ Generate a neighbor of the solution C 
           ∆E ൌ Objectiveሺsଶሻ െ Objectiveሺsଵሻ 
           If   (∆E ൏ 0),   Then 
                                             sଵ ൌ sଶ  
          Else If   EXP(∆E/Tሻ   ሺ0~1ሻ,   Thenܴ݉݀݊ܽ
                                             sଵ ൌ sଶ 
          End If 
          T ൌ T െ Dt 
Until T< Temperature of stop condition [22]. 
 
4 Simulation Results 

4.1   Case Study 
The PMU placement was performed for an active 

model of the 30-bus IEEE network, using ACO, GA, 
PSO and SA that its topology is shown in Fig. 2 [23]. 
We assume that the observability is complete. Therefore 
only the answers are selected which make all nodes’ 
voltage phasors observable. 

Therefore PMUs are installed at all important 
locations of the network to be observed [25]. 

 
4.2   Discussion 

In modified ACO, 30 ants travel on the nodes of 
network, the tour is finished when the network has been 
observable. When the tour is completed by 30 ants, 
pheromone matrix changes, and new ants begin 
traveling with new values of pheromone. This process 
continues to find the optimum result. Fig. 3 shows the 
placement of PMUs in IEEE 30-bus using the proposed 
ACO. 

 
 
 

 
Fig. 2 Schematic of 30-bus IEEE system [24] 
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Fig. 4 shows the best of fitness function values in 
any repeat using the proposed ACO. In this simulation, 
10 PMUs are placed in the buses 1, 5, 9, 10, 12, 19, 24, 
25, 28 and 29. The result value of fitness function is 
8.63. 

Table 2 shows that the number of iterations in ACO, 
appeared in [10], is more than that in modified ACO, 
therefore we could improve convergence speed 
compared to [10]. 

The result of the simulation using GA, is 10 PMUs 
on IEEE 30-bus. The final value of fitness function is 
8.62. Fig. 5 shows the placement of PMUs using the 

proposed GA. Fig. 6 shows the fitness function values 
in any generation and shows individual fitnesses. 
 
 
Table 2 Comparing the number of iterations (convergence 
speed). 

Methods Number of iterations 

Proposed ACO 20 

Introduced ACO in [10] 35 

 
 
 

 
Fig. 3 Placement of PMU in IEEE 30-bus using the proposed ACO 

 
 

 
Fig. 4 Best of fitness function using the proposed ACO 
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Fig. 5 Placement PMU using the proposed GA 

 
 

 
Fig. 6 The fitness function values the using proposed GA 

 
 

After the optimized placement on procedure is 
completed using PSO, it is shown that only 11 PMUs 
are needed with the complete observability and a good 
redundancy condition is satisfied. Value of fitness 

function is 9.1. Fig. 7 shows the PMU placement using 
the proposed PSO. Fig. 8 shows the cost function values 
in any repeat. 
 



 

84                                                           Iranian Journal of Electrical & Electronic Engineering, Vol. 9, No. 2, June 2013 

 
Fig. 7 Placement PMU using the proposed PSO 

 
 

 

 
Fig. 8 The cost function values using the proposed PSO 

 
 

After the placement on network is completed using 
proposed SA, it is shown that only 11 PMUs are needed 
with the complete observability and a suitable 
redundancy condition is satisfied. The value of the 
fitness function is 9.4. Fig. 9 shows the PMU placement 
using the proposed SA and Fig. 10 shows fitness 
function values in any repeat. 

Simulation results show that the ACO finds a 
smaller fitness function value than PSO’s and SA’s, but 
equals to GA’s. They also show that the numbers of 
PMUs are less in ACO than that in PSO and SA 
algorithms, but it is equal to that in GA. Table 3 shows 
this comparison. 

Table 3 Comparison of algorithms in PPO. 

Algorithms Numbers of PMU Fitness function value 

ACO 10 8.63 

GA 10 8.62 

PSO 11 9.1 

SA 11 9.4 
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Fig. 9 Placement PMU using the proposed SA 

 
 

 
Fig. 10 The fitness function values any repeat using the proposed SA 

 
5 Conclusion 

With the development and strategic positioning of 
PMUs in significant numbers, there is an increasing 
need for PPO. In this paper a modified ACO method for 
PPO problems was suggested. ACO was compared to 
PSO, SA and GA. The proposed methods were applied 
to the PPO problems in 30-bus IEEE standard power 
systems to show its effectiveness. The proposed 
algorithms were validated by simulation. The results 
obtained are indicative of the fact that the optimal 
placement of PMU increases the accuracy of the 
obtained estimates and efficiency of the bad data 
detection algorithms. Increasing the number of buses in 
power system shows that ACO, in case of equality 

between the number of ants and buses, gets a better 
result in comparison to the SA’s and PSO’s. However 
the ACO’s results are equal to the GA’s. Also 
convergence speed in modified ACO was improved in 
comparison to the last works. The future works should 
include the consideration of zero injection bus and 
changes in the topology of the power systems. The 
limitations of GPS in the aspect of timing in fitness 
function should also be considered. 
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